Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress.

نویسندگان

  • Yongke Lu
  • Tung Ming Leung
  • Stephen C Ward
  • Natalia Nieto
چکیده

Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the L-citrulline/nitric oxide (NO·) salvage pathway to continually supply L-arginine from L-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/- mice (Ass+/+ mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/- mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/- compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipopolysaccharide-induced liver injury in rats treated with the CYP2E1 inducer pyrazole.

Elevated LPS and elevated cytochrome P-450 2E1 (CYP2E1) in liver are two major independent risk factors in alcoholic liver disease. We investigated possible synergistic effects of the two risk factors in causing oxidative stress and liver injury. Sprague-Dawley rats were injected intraperitoneally with pyrazole (inducer of CYP2E1) for 2 days, and then LPS was injected via tail vein. Other rats ...

متن کامل

S-adenosyl-L-methionine attenuates hepatotoxicity induced by agonistic Jo2 Fas antibody following CYP2E1 induction in mice.

S-Adenosyl-l-methionine (SAM) has been shown to be hepatoprotective against many toxic agents. Its possible effectiveness in protecting against CYP2E1-dependent toxicity is not known. We recently reported that treatment of mice with pyrazole to induce CYP2E1 increased hepatotoxicity produced by Fas agonistic Jo2 antibody. The current study was designed to investigate the effect of exogenous adm...

متن کامل

S-adenosyl methionine protects ob/ob mice from CYP2E1-mediated liver injury.

Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-l-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compa...

متن کامل

p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress

Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...

متن کامل

CYP2E1 Sensitizes the Liver to LPS- and TNF α-Induced Toxicity via Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated Kinases

The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol elevated production of lipopolysaccharide (LPS) and TNFα and to alcohol induction of CYP2E1. These...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 302 3  شماره 

صفحات  -

تاریخ انتشار 2012